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Abstract—In this paper, we introduce a new fusion model
whose objective is to fuse multiple region-based segmentation
maps to get a final better segmentation result. The suggested
new fusion model is based on an energy function originated
from the global consistency error (GCE), a perceptual mea-
sure which takes into account the inherent multiscale nature
of an image segmentation by measuring the level of refine-
ment existing between two spatial partitions. Combined with
a region merging/splitting prior, this new energy-based fusion
model of label fields allows to define an interesting penalized
likelihood estimation procedure based on the GCE criterion with
which the fusion of basic, rapidly-computed segmentation results
appears as a relevant alternative compared with other (possi-
bly complex) segmentation techniques proposed in the image
segmentation field. The performance of our fusion model was
evaluated on the Berkeley dataset including various segmenta-
tions given by humans (manual ground truth segmentations).
The obtained results clearly demonstrate the efficiency of this
fusion model.

Index Terms—Berkeley image dataset, cluster ensemble
algorithm, color textured image segmentation, combination of
multiple segmentations, energy-based model, global consistency
error (GCE), label field fusion, penalized likelihood model,
segmentation ensemble.

I. INTRODUCTION

COMBINING multiple, quickly estimated (and eventually
poor or weak) segmentation maps of the same image to

obtain a final refined segmentation has become a promising
approach, over the last few years, to efficiently solve the dif-
ficult problem of unsupervised segmentation [1] of textured
natural images.

This strategy is considered as a particular case of the
cluster ensemble problem. Originally investigated in machine
learning,1 this approach is also known as the concept of
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classifiers to improve the performance of individual classifier and also known
under the name of classifier ensemble problem or ensemble of predictors,
committee machine or mixture of expert classifier [6]–[8].

fusing multiple data clusterings for the amelioration of the
final clustering result [2]–[5]. Indeed, an inherent feature of
images is the spatial ordering of the data and thus, image seg-
mentation is a clustering procedure for grid-indexed data. In
this context, the partitioning into regions must consider both
closeness in the feature vector space and spatial coherence
property of the image pixels. This approach can also be con-
sidered as a special case of restoration/denoising procedure
in which each rough segmentation (to be combined) is, in
fact, assumed to be a noisy observation or solution and the
final goal of a fusion model is to obtain a denoised segmen-
tation solution which could be a compromise or a consensus
(in terms of contour accuracy, clusters, number of regions,
etc.) provided by each input segmentations. Somehow, the
final combined segmentation is the average of all the putative
segmentations to be fused with respect to a specific crite-
rion. This approach has first been proposed in [9] and [10]
with a constraint specifying that all input segmentations (to be
fused) must be composed of the same region number. Shortly
after, other fusion approaches have been proposed with an
arbitrary number of regions in [11] and [12]. Since these
pioneering works, this fusion of multiple segmentations2 of
the same scene in order to get a more accurate and reliable
result of segmentation (which would be, in some criterion
sense, the average of all the individual segmentation) is now
implemented according to several strategies or well-defined
criteria.

Following this strategy, we can mention the combina-
tion model introduced in [11] which fuses the individual
putative segmentations according to the within-point scatter
of the cluster instances (described in terms of the set of
local requantized label histogram produced by each input
segmentations), by simply running a K-means-based fusion
procedure. By doing so, the author implicitly assumes, in
fact, a finite distribution mixture-based fusion model in [13]
which the labels assigned to the different regions (given by
each input segmentations to be fused), are modeled as ran-
dom variables distributed according K spherical clusters with
an equal volume (or Gaussian distribution [14] with identi-
cal covariance matrix) which can be efficiently clustered with

2This strategy can also be efficiently exploited, more generally, for var-
ious other problems involving label maps other than spatial segmentations
(e.g., depth field estimation, motion detection or estimation, 3-D reconstruc-
tion/segmentation, etc.).
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a K-means algorithm. In a similar way, we can also men-
tion the combination model performed in [15] which follows
the same idea but for the set of local soft labels (esti-
mated with a multiscale thresholding technique) and for which
the fusion operation is thus performed in the sense of the
weighted within class/cluster inertia. This fusion of segmen-
tations can also be carried out according to the probabilistic
version of the well-known Rand index [13] (PRI) criterion
with an energy-based fusion model in order to estimate the
segmentation solution with the maximum number of pairs
of pixels having a compatible label relationship with the
ensemble of segmentations to be fused. This PRI criterion
can be minimized either with a stochastic random walking
technique [12] (along with an estimator based on mutual
information to estimate the optimal region number), or with
an algebraic optimization method [16], or with an expec-
tation maximization procedure [17] (combined with integer
linear programming and performed on superpixels, initially
estimated by a simple over-segmentation) or also in the penal-
ized PRI sense in conjunction with a global constraint on
the combination process [18] (constraining the size and the
number of segments) with a Bayesian approach relying on a
Markovian energy function to be minimized. Combination of
segmentation maps can also be performed according to the
variation of information (VoI) criterion [19] (by exploiting
an energy-based model minimized by applying a pixel-wise
gradient descent method strategy under a spatial coherence
constraint). Fusion of segmentations can also be achieved in
the evidence accumulation sense [4] (and via a hierarchi-
cal agglomerative partitioning strategy), or in the F-measure
(or precision-recall criterion) sense [20] (and via a hierarchi-
cal relaxation scheme fusing the different segments generated
in the segmentation ensemble in the final combined seg-
mentation). Finally, we can also mention the fusion scheme
proposed in [21] in the optimal or maximum-margin hyper-
plane (between classes) sense and in which the hyperspectral
image is segmented based on the decision fusion of mul-
tiple and individual support vector machine classifiers that
are trained in different feature subspaces emerging from a
single hyperspectral data set or the recent Bayesian [13]
fusion procedure for satellite image segmentation proposed
in [22]. In addition, we can cite the image segmentation
fusion model using general ensemble clustering methods
proposed in [23] or the approach presented in [24] based
on a consensus clustering algorithm, called filtered stochas-
tic best one element move minimizing a distance function
(called symmetric distance function) with a stochastic gradient
descent.

The fusion model, introduced in this paper, is based on
the global consistency error (GCE) measure. This graph
theory-based measure has been designed to directly take
into account the following interesting observation: segmen-
tations produced by experts are generally used as a reference
or ground truths for benchmarking segmentations performed
by various algorithms (especially for natural images). Even
though different people propose different segmentations for
the same image, the proposed segmentations differ, essen-
tially, only in the local refinement of regions. In spite of these

variabilities, these different segmentations should be inter-
preted as being consistent, considering that they can express
the same image segmented at different levels of detail and,
to a certain extend, the GCE measure [13] is designed to
take into account this inherent multiscale property of any seg-
mentations made by humans. In our fusion model, this GCE
measure, which has thus a perceptual and physical meaning,
is herein adopted and tested as a new consensus-based like-
lihood energy function of a fusion model of multiple weak
segmentations.

In the remainder of this paper, we first describe the pro-
posed fusion model and the optimization strategy used to
minimize the consensus energy function related to this new
fusion model in Section II. In Section III, we present the
generation of the segmentation ensemble to be combined
with our model. Finally, an ensemble of experimental tests
and comparisons with existing segmentation approaches is
described in Section IV. In this section, our model of segmen-
tation is tested and benchmarked in the Berkeley color image
dataset.

II. PROPOSED FUSION MODEL

A. GCE Measure

There are a lot of (similarity) metrics in the statistic
and vision literature for measuring the agreement between
two clusterings or segmentation maps. Among others, we
can cite [25], [26]; the Jacquard coefficient [27], a variant
of the counting pairs also called the Rand index [13] (whose
the probabilistic version is the PRI), the Mirkin distance [28],
the set matching measures (including the F-measure [20], [29],
and the purity and inverse purity [30]), and the information
theory-based metrics; namely the VoI [19], V-measure [31]
or kernel-based metrics (graph kernel or subset signifi-
cance [33]-based measures [32]) or finally the popular Cohen’s
kappa [34], [35] measure.

In our fusion model, we use the GCE [36] criterion which
(is the only one, to our knowledge that) measures the extent to
which one segmentation map can be viewed as a refinement of
another segmentation. In this metric sense, a perfect correspon-
dence is obtained if each region in one of the segmentation
is a subset (i.e., a refinement) or geometrically similar to a
region in the other segmentation. Segmentations with similar
GCE can be interpreted as being consistent, inasmuch as they
could express the same natural image segmented at a different
degree of detail, as it is the case of the segmented images gen-
erated by different human observers for which a finer level of
detail will be (possibly) merged by another observer in order
to give the larger regions of a segmentation thus estimated at
a coarser level.

This GCE distance can be exploited as a segmentation mea-
sure to evaluate the correspondence of a segmentation machine
with a ground truth segmentation. To this end, it was recently
proposed in image segmentation [37], [38] as a quantitative
and perceptually interesting metric to compare machine seg-
mentations of an image dataset to their respective manually
segmented images given by human experts (i.e., a ground truth
segmentations) and/or to objectively measure and rank (based
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on this GCE criterion) the efficiency of different automatic
segmentation algorithms.3

Let St = {Ct
1, Ct

2, . . . , Ct
Rt }, Sg = {Cg

1, Cg
2, . . . , Cg

Rg}, Rt,
and Rg be, respectively, the segmentation result, the manually
segmented image, and the number of regions4 in St and in Sg.
We consider, for a particular pixel pi, the segments in St and
Sg including this pixel. We denote these segments by Ct

<pi>

and Cg
<pi>, respectively. If one segment is a subset of the other,

so the pixel is practically included in the refinement area, and
the local error should be equal to zero. If there is no subset
relationship, then the two regions overlap in an inconsistent
way and the local error ought be different from zero [36]. The
local refinement error (LRE) is therefore denoted at pixel pi as

LRE
(
St, Sg, pi

) =
∣∣∣Ct

<pi>
\Cg

<pi>

∣∣∣

|Ct
<pi>

| (1)

where \ represents the set differencing operator and |C| the
cardinality of the set of pixels C. As noticed in [36], this
clustering (or segmentation) error measure is not symmet-
ric and encodes a measure of refinement in only one sense.
LRE(St, Sg, pi) is equal to 0 specifically if St is a refinement
of Sg at pixel pi, but not vice-versa. A possible and natural
way to combine the LRE at each pixel into a measure for the
whole image is the so-called GCE which constraints all local
refinement to be in the same sense in the following way:

GCE
(
St, Sg)

= 1

n
min

{
n∑

i=1

LRE
(
St, Sg, pi

)
,

n∑

i=1

LRE
(
Sg, St, pi

)
}

(2)

where n is the pixels number pi within the image. This seg-
mentation error, based on the GCE, is a metric whose values
belong to the interval [0, 1]. A measure of 0 expressed that
there is a perfect match between the two segmentations (iden-
tical segmentations) and an error of 1 represents a maximum
difference between the two segmentations to be compared.

Although a fundamental problem with the GCE measure is
that there are two bad, unrealistic segmentation types (i.e.,
degenerate segmentations) giving an unusually high score
value (i.e., a zero error for GCE) [36]. These two degenerative
segmentations are the two following trivial cases; one pixel per
region (or segment) and one region per the whole image. The
former is, in fact, a detailed improvement (i.e., refinement) of
any segmentation, and any segmentation is a refined improve-
ment of the latter. This illustrates why, the GCE measure is
useful only when comparing two segmentation maps with an
equal number of regions.

In our application, in order to be able to define an energy-
based fusion model, avoiding the two above-mentioned degen-
erate segmentation cases, and for which a reliable consensus

3In addition, as the semantic gap is generally considered as a difference
between low-level segmentation (i.e., labeling decision based on a machine
by using pixel information) and high-level segmentation (i.e., based on the
human expert’s labeling decision), the use of the GCE-based perceptually
metric also leads to objectively measure and rank the semantic gap width as
well.

4A region is a set of connected pixels grouped into the same class and a
class, a set of pixels possessing similar textural characteristics.

or compromise resulting segmentation map would be solu-
tion, via an optimization scheme (see Section II-B), we have
replaced the minimum operator in the GCE by the average
operator

GCE�
(
St, Sg)

= 1

2n

{
n∑

i=1

LRE
(
St, Sg, pi

) +
n∑

i=1

LRE
(
Sg, St, pi

)
}

. (3)

This new measure is slightly different, while being a tougher
measure than the usual and classical GCE measure since GCE�

is always greater than GCE for any automatic segmentation
relatively to a given ground truth Sg.5

The performance score, based on the GCE measure, was
also lately used in the segmentation of natural image [40]
as a score to compare an unsupervised image segmentation
given by an algorithm to an ensemble of ground truth seg-
mentations provided by human experts. This ensemble of
slightly different ground truth partitions, given by experts,
represents, in essence, the multiple acceptable ground truth
segmentations related to each natural image and reflecting
the inherent variation of possible (detailed) interpretations
(of an image) between each human segmenter. Recently, this
variation among human observers, modeled by the Berkeley
segmentation database (BSD) [36], comes from the fact that
each human generates a segmentation (of a given image) at dif-
ferent levels of detail. These variations highlight also the fact
that the image segmentation is inherently an ill-posed problem
in which there are different values of the number of classes for
the set of more or less detailed segmentations of a given image.
Let us finally mention that, as already said, the GCE metric is
a measure tolerant to this intrinsic variability between possi-
ble interpretations of an image by different human observers.
Indeed, this variability is often due to the refinement between
human segmentations represented at different levels of image
detail, abstraction or resolution. Thus, in the presence of a
set of various human segmentations (showing, in fact, a small
fraction of all possible perceptually consistent spatial parti-
tions of an image content [41]), this measure of segmentation
quality, based on GCE criterion, has to quantify the degree
of similarity between an automatic image segmentation (i.e.,
performed by an algorithm) and this set of possible ground
truths. As proposed in [37], this variability can simply be taken
into account by estimating the mean GCE value. More pre-
cisely, let us assume a set of L manually segmented images
{Sg

k}k≤L = {Sg
1, Sg

2, . . . , Sg
L} related to a same scene. Let St be

the segmentation to be compared to the manually labeled set,

5An alternative to avoid the above-mentioned degenerate segmentation
cases was also proposed in [39] with the so-called bidirectional consistency
error (BCE)

BCE
(
St, Sg) = 1

n

∑

i

max
{
LRE

(
St, Sg, pi

)
, LRE

(
Sg, St, pi

)}

in which the problem of degenerate segmentations “cheating” a benchmark
also disappears. Nevertheless, this measure does not tolerate refinement at
all (more precisely, BCE is a measure that penalizes dissimilarity between
segmentations proportional to the degree of region overlap) contrary to our
GCE� measure which tolerates, to a certain extent, a refinement between two
segmentations (i.e., which considers, as consistent, two segmentations with a
certain different degree of detail).



2492 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 9, SEPTEMBER 2017

the mean GCE measure is thus given by

GCE
(
St,

{
Sg

k}k≤L
}) = 1

L

L∑

k=1

GCE
(
St, Sg

k

)
(4)

and equivalently, we can define

GCE�
(

St,
{
Sg

k

}
k≤L

)
= 1

L

L∑

k=1

GCE�
(
St, Sg

k

)
. (5)

For example, this GCE measure will return a high score (i.e.,
a low value) for an automatic segmentation St which is homo-
geneous, in the sense of this criterion, with most of the ground
truth segmentations provided by human segmenters.

B. Penalized Likelihood-Based Fusion Model

Let us assume now that we have an ensemble of L (different)
segmentations {Sk}k≤L = {S1, S2, . . . , SL} (of the same scene)
to be combined in the goal of providing a final improved
segmentation result Ŝ (i.e., more accurate than the individ-
ual member of {Sk}k≤L). To this end, a classic strategy for
finding a segmentation result Ŝ, which would be a consen-
sus or compromise of {Sk}k≤L, or equivalently, a strategy for
combining/fusing these L individual segmentations, consists in
designing an energy-based model generating a segmentation
solution which is as close as possible (with the GCE� consid-
ered distance) to all the other segmentations or, equivalently,
a likelihood estimation model of Ŝ, in the minimum GCE

�

distance sense [or according to the maximum likelihood (ML)
principle for this GCE

�
criterion], since this measure, contrary

to the GCE measure is not degenerate. This optimization-based
approach is sometimes referred to as the median partition [5]
with respect to both segmentation ensemble {Sk}k≤L and GCE

�

criterion. In this framework, if Sn designates the set of all
possible segmentations using n pixels, the consensus seg-
mentation (to be estimated in the GCE

�
criterion sense) is

then straightforwardly defined as the minimizer of the GCE
�

function

ŜGCE
� = arg min

S∈Sn

GCE
�(

S, {Sk}k≤L
)
. (6)

However, the problem of image segmentation remains an
ill-posed problem providing different solutions for multiple
possible values of regions number (of the final fused segmen-
tation and/or of each segmentation to be fused) and which
is a priori unknown. To make this problem a well-posed
problem characterized by a unique solution, it is essential to
add some constraints on the segmentation process, favoring
merging regions or conversely, an over-segmentation. From
the probabilistic standpoint, these regularization constraints
could be defined via a prior distribution on the segmentation
solution ŜGCE

� . Analytically, this requires to recast our like-
lihood estimation problem of the consensus segmentation in
the penalized likelihood framework by adding, to the simple
ML fusion model [see (6)], a regularization term, allowing to
integrate knowledge about the types of resulting fused seg-
mentation, a priori considered as acceptable solutions. In our
case, we search to estimate a resulting segmentation map pro-
viding a reasonable number of segments or regions. In our

framework, this property, regarding the types of segmentation
maps that we would like to favor, can be efficiently modeled
and controlled via a region merging or splitting regularization
term related to the different (connected) region area of the
resulting consensus segmentation map. In this optic, an inter-
esting global prior, derived from the information theory, is the
following region-based regularization term:

E Reg
(
S = {Ck}k≤R

) =
∣∣∣∣∣
−

R∑

k=1

[ |Ck|
n

log
|Ck|

n

]
− R

∣∣∣∣∣
(7)

where we remind that R denotes the region number (or seg-
ments) in the segmentation map S, n, and |Ck| are, respectively,
the pixel number within the image and the pixel number in the
kth region Ck of the segmentation map S (i.e., the area, in terms
of pixel number, of the region Ck). R is an internal parameter
of our regularization term that defines the mean entropy of
the a priori defined acceptable segmentation solutions. This
penalty term favors merging (i.e., leads to a decrease of the
penalty energy term) if the current segmentation solution has
an entropy greater than R (i.e., in the case of an oversegmen-
tation) and favors splitting in the contrary case. Contrary to the
regularization term defined in [18], this one takes into account
both region number of the resulting segmentation solution,
but also the proportion of these regions. In image segmen-
tation, this information theoretic regularization term (without
the absolute value and with R = 0) has been used first to
restrict the number of clusters of the classical objective func-
tion of the fuzzy K-means clustering procedure [42] (i.e., the
class number of the segmentation problem) in [43] and later,
to efficiently restrict the number of regions of an objective
function in a level set segmentation framework [44]. Finally,
with this regularization term, a penalized likelihood solution
of our fusion model is thus given by

ŜGCE
�

β

= arg min
S∈Sn

{
GCE

�(
S, {Sk}k≤L

) + β E Reg(S)
}

= arg min
S∈Sn

GCE
�

β

(
S, {Sk}k≤L

)
(8)

with β allowing to weight the related contribution of the region
splitting/merging argument in our energy-based fusion model.

It is also noteworthy to mention that the region split-
ting/merging regularization term remains essential in some
relatively rare cases in which the segmentation solution may
lead to a GCE

�
measure which is minimal in the trivial one

region segmentation case. The penalized likelihood approach
allows to avoid these (relatively rare) situations. In addition
and consequently, this penalized likelihood approach allows
also to exploit the original GCE measure with the minimum
operator [see (2)]. A comparison of efficiency between these
two error metrics, in our fusion-based segmentation appli-
cation, will be discussed later, in the experimental results
section.

C. Optimization of the Fusion Model

Our fusion model of multiple label fields, based on the
penalized GCE

�
criterion, is therefore formulated as a global

optimization problem involving a nonlinear objective func-
tion characterized by a huge number of local optima across
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Fig. 1. Examples of initial segmentation ensemble and fusion results (Algorithm 1). First three rows: results of K-means clustering for the segmentation
model presented in Section III. Fourth row: input image chosen from the Berkeley image dataset and final segmentation given by our fusion framework.

the lattice of possible clusterings Sn. In our case, this opti-
mization problem is difficult to solve, mainly because (among
other things) we are not able to express (for this GCE

�
cri-

terion) the local decrease in the energy function for a new
label assignment at pixel pi, and consequently, we cannot
adopt the pixel-wise optimization strategy described in [19]
in which a simple Gauss–Seidel type algorithm is exploited.
This aforementioned Gauss–Seidel type algorithm is, in fact,
a deterministic relaxation scheme or an approximate gradi-
ent descent where any pixel of the consensus segmentation
to be classified are updated one at a time (by searching
the minimum local energy label assignment also called the
mode). Nevertheless, in our case, we can adopt the general
optimization strategy proposed in [20], in which the strat-
egy of optimization is based on the ensemble of superpixels
belonging in {Sk}k≤L, i.e., the segments ensemble or regions
provided by each individual segmentations to be fused. This
approach has other crucial advantages. First, by considering
this set of superpixels as the atomic elements to be segmented
in the consensus segmentation (instead of the set of pixels),
we considerably decrease the computational complexity of the
consensus segmentation process. Second, it is also quite rea-
sonable to think that, if individually, each segmentation (to be
fused) might give some poor results of segmentation for some
subparts of the image (i.e., bad regions or superpixels) and also
conversely good segmented regions (or superpixels) for other
subparts of the image, the superpixel ensemble created from
{Sk}k≤L is likely to contain the different individual pieces of
regions or right segments belonging to the optimal consensus
segmentation solution. In this semi-local optimization strategy,
the relaxation scheme is based on a variant of the iterative con-
ditional modes (ICMs) [45], i.e., a Gauss–Seidel type process
(see Algorithm 1 for more details) which iteratively optimizes

only one superpixel (in our strategy) at a time without con-
sidering the effect on other superpixels (until convergence is
achieved). On the one hand, this iterative search algorithm is
simple and deterministic, however, on the other hand, the main
drawback of this technique is to strongly depend on the ini-
tialization step, which should be not too far from the ideal
solution (in order to prevent the ICM from getting stuck in a
local minima far from the global one). To this end, we can
take, as initialization, the segmentation map Ŝ�[0]

GCE
defined as

follows:

Ŝ[0]

GCE
�

β

= arg min
S∈{Sk}k≤L

GCE
�

β

(
S, {Sk}k≤L

)
(9)

i.e., from the L segmentation to be combined, we can select
the one ensuring the minimal consensus energy (in the GCE

�

β

sense) of our fusion model. This segmentation will be con-
sidered as the first iteration of our penalized likelihood
model (8).6 This iterative algorithm attempts to obtain, for
each superpixel to be classified, the minimum energy label
assignment. More precisely, it begins with an initialization
GCE

�

β not far to the optimal segmentation [see (9)], and
for each iteration and each atomic region (superpixel), ICMs
assigns the label giving the largest decrease of the energy
function (to be minimized). We summarize in Algorithm 1,
the overall penalized GCE-based fusion model (GCEBFM)
algorithm based on the ICM procedure and superpixel set.

6Another efficient approach consists in running the ICM procedure, inde-
pendently, with the first NI optimal input segmentations extracted from the
segmentation ensemble (in the GCE

�
β sense) as initialization, and to select,

once convergence is achieved, the result of segmentation associated with the
lowest GCE

�
β energy. This strategy will improve slightly the performance of

our combination model, but will increase the computational cost.
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Penalized GCE-Based Fusion Algorithm

III. GENERATION OF THE SEGMENTATION ENSEMBLE

The initial ensemble of segmentations, which will be com-
bined via our fusion model, is rapidly generated, in our case,
through the standard K-means method [46] associated with 12
different color spaces in order to ensure variability in the seg-
mentation ensemble, those are, YCbCr, TSL, YIQ, XYZ, h123,
P1P2, HSL, LAB, RGB, HSV, i123, and LUV (in [18] more
explanations are given on the choice of these color spaces).
Also, for the class number K of the K-means, we resort to a
metric measuring the complexity relative to each input image,
in terms of number of the different texture type present in
the natural color image. This metric, presented in [47], is in
fact the measure of the absolute deviation (L1 norm) of the
ensemble of normalized histograms obtained for each over-
lapping squared fixed-size (Nw) neighborhood included within
the image. This measure ranges in [0, 1] and an image with dif-
ferent textured regions will provide a complexity value close
to 1 (and conversely, a value close to 0 when the image is
characterized by few texture types). In our framework

K = floor

(
1

2
+ [

Kmax × complexity value
])

(10)

where floor(x) is a function that gives the largest integer less
than or equal to x and Kmax is an upper-bound of the number
of classes for a very complex natural image. It is notewor-
thy to mention that, in our application, we use three different
values of Kmax (Kmax

1 = 11, Kmax
2 = 9, and Kmax

3 = 3)
once again, in order to ensure variability in the segmentation
ensemble.

In addition, as input multidimensional descriptor of feature,
we exploited the ensemble of values (estimated around the
pixel to be labeled) of the requantized histogram (with equal
bins in each color channel). In our framework, this local his-
togram is requantized, for each color channels, in a Nb = q3

b
bin descriptor, estimated on an overlapping, fixed-size squared
(Nw = 7) neighborhood centered around the pixel to be classi-
fied with three different seeds for the K-means algorithm and
with two different values of qb, namely qb = 5 and qb = 4.
In all, the number of input segmentations, to be combined, is
60 = 12 × (3 + 2).7

IV. EXPERIMENTAL RESULTS

A. Initial Tests Setup

In all the tests, the evaluation of our fusion scheme
[see (8)] is presented for an ensemble of L = 60 seg-
mentations {Sk}k≤L with spatial partitions generated with the
simple K-means-based segmentation technique introduced in
Section III (see Fig. 1). Moreover, for these initial experiments,
we have fixed, R = 4, 2 and β = 0, 01 [see (7) and (8)]. The
justification of these internal parameter values (for the fusion
algorithm) will be detailed in Section IV-B.

First of all, we have tested the convergence properties of our
iterative optimization procedure based on superpixel by choos-
ing, as initialization of our iterative local gradient descent
algorithm, various initializations (extracted from our segmen-
tation ensemble {Sk}k≤L) and one noninformative (or blind)
initialization by creating an image exhibiting K horizontal and
identical rectangular regions, thus with K various region labels
(see Figs. 2 and 3). Before all, we can notice that our proposed
optimization procedure shows good convergence properties
in its ability to achieve the optimization of our consensus
function of energy. Indeed, the consensus energy function is
perhaps not purely convex (three somewhat different solutions
are obtained), nevertheless, the obtained final solutions (after
8 iterations) remain very similar. In addition, the final GCE

�

β

score along with the resulting final segmentation map, is on
average, all the better than the initial segmentation solution
is associated to a good initial GCE

�

β score (while remaining
robust when the initialization is not reliable). Consequently,
the combination of the use the superpixels of {Sk}k≤L along
with a good initialization strategy [see (9)] definitely gives
good convergence properties to our fusion model. Second, we
have tested the influence of parameter R [see (7)] on the
generated solutions of segmentation. Fig. 4 indicates unam-
biguously that R can be clearly interpreted as a regularization

7This process aims to ensure the diversity needed to achieve a reliable
(i.e., good) set of putative segmentation maps on which the final result will
depend. This diversity is crucial to guarantee the availability of more (reli-
able) information for the consensus function (on which the model of fusion
is defined) [5], [18]. The use of different segmentations associated with the
same scene, expressed in diverse spaces of color, is (somewhat) equivalent to
observing the scene with several sensors or cameras with different character-
istics [22], [48] and also a necessary condition for which the fusion model
can be efficiently carried out. On the other hand, it is easy to understand
that the fusion of similar solutions of segmentation cannot provide a better
reliable segmentation than an individual segmentation. The time of execution,
related to each segmentation achieved by this simple K-means technique is
rapid (less than 1 s) for a nonoptimized sequential program in C++.
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Fig. 2. Example of fusion convergence result on three various initializations
for the Berkeley image (n0187039). Left: initialization. Right: segmentation
result after eight iterations of our GCEBFM fusion model. From top to bottom:
the original image, the two input segmentations (from the segmentation set)
which have the best and the worst GCE

�
β value, and one noninformative (or

blind) initialization.

Fig. 3. Progression of the segmentation result (from lexicographic order)
during the iterations of the relaxation process beginning with a noninformative
(blind) initialization.

parameter of the final number of regions of our combina-
tion scheme; favoring under-segmentation, for low values of
R (and consequently penalizing small regions) or splitting,
for great values of R. To further test the regularization role
of R in our fusion model, we have also plotted in Fig. 6,
the average regions number for each image of the BSD300
as a function of the value of R. In our case, the value for
R = 4, 2 (see Section IV-B) allows to obtain 23 regions,
on average, on the BSD300. It is worth recalling that the

Fig. 4. Example of segmentation solutions generated for different values of
R (β = 0.01), from top to bottom and left to right, R = {1.2, 2.2, 3.2, 4.2},
respectively, segmentation map results with 4, 12, 20, and 22 regions.

Fig. 5. Example of fusion result using, respectively, L = 5, 10, 30, and 60
input segmentations (i.e., 1, 2, 6, and 12 color spaces). We can also com-
pare the segmentation results with the segmentation maps given by a simple
K-means algorithm (see examples of segmentation maps in the segmentation
ensemble in Fig. 1).

Fig. 6. Plot of the average number of different regions obtained for each
segmentation (of the BSD300) as a function of the value of R.

average regions number belonging to the set of human seg-
mentation ensemble of the BSD300 is around this value
(see [37]).
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TABLE I
AVERAGE PERFORMANCE, RELATED TO THE PRI METRIC, OF SEVERAL

REGION-BASED SEGMENTATION ALGORITHMS (WITH OR WITHOUT A

FUSION MODEL STRATEGY) ON THE BSD300, RANKED IN THE

DESCENDING ORDER OF THEIR PRI SCORE (THE HIGHER

VALUE IS THE BETTER) AND CONSIDERING ONLY THE

(PUBLISHED) SEGMENTATION METHODS WITH

A PRI SCORE ABOVE 0.75 [11], [16]–[20],
[37], [38], [47], [50]–[68]

B. Performances and Comparison

In this section, we have benchmarked our model of fusion as
algorithm of segmentation on the BSD300 [36] (with images
normalized to have the longest side equal to 320 pixels). The
segmentation results are then super-sampled in order to obtain
segmentation images with the original resolution (481 × 321)
before the estimation of the performance metrics.

To this end, several performance measures computed on the
full image dataset will be indicated for a fair comparison with
the other state-of-the-art segmenters proposed in the literature.
These measures of performance include first and foremost the
PRI [49] score, which seems to be among the most correlated
(in term of visual perception) with manual segmentations [37]
and which is generally exploited for segmentations based on
region. This PRI score computes the percentage of pairs of
pixel labels perfectly labeled in the result of segmentation and
a value equal to PRI = 0.75 means that, on average, 75% of
pairs of pixel labels are correctly labeled (on average) in the
results of segmentation on the BSD300.

TABLE II
AVERAGE PERFORMANCE OF DIVERSE REGION-BASED SEGMENTATION

ALGORITHMS (WITH OR WITHOUT A FUSION MODEL STRATEGY) FOR

THREE DIFFERENT PERFORMANCES (DISTANCE) MEASURES

(THE LOWER VALUE IS THE BETTER) ON THE BSD300
[11], [17]–[19], [37], [38], [50], [54]–[56], [65], [69]

To guarantee the integrity of the benchmark results, the two
control parameters of our algorithm of segmentation [i.e., R
and β, see (7) and (8)] are optimized on the ensemble of
training images by using a local search procedure (with a fixed
step-size) on a discrete grid, on the (hyper)parameter space and
in the feasible ranges of parameter values (β ∈ [10−3 : 10−1]
[step-size = 10−3] and R ∈ [3:6] [step-size = 0.2]. We have
found that R = 4, 2 and β = 10−2 are reliable hyper-
parameters for the model yielding interesting 0, 80 PRI value
(see Table I).

For a fair comparison, we now present the results of our
fusion model by displaying the same segmented images
(see Figs. 10 and 11) as those presented in the model of
fusion introduced in [18] and [19]. The results concern-
ing the whole dataset are accessible on-line via this link:
“http://www.etud.iro.umontreal.ca/∼khelifil/ResearchMaterial/
gcebfm.html.”

In order to ensure an effective comparison with other
segmentation methods we have also used the VoI mea-
sure [70], the GCE [36], and the boundary displacement error
(BDE) [71] (this metric measures the average displacement
error of boundary pixels between two segmented images,
especially, it defines the error of one boundary pixel as the
Euclidean distance between the pixel and the closest pixel in
the other boundary image) (see Table II, the lower distance is
better). The results show that our method provides a compet-
itive result for some other metrics based on different criteria
and comparatively to state-of-the-arts.

In addition, and as it has been proposed in Section II-B, we
have used our penalized likelihood approach with the original
GCE consensus energy function, with the minimum opera-
tor, [i.e., by using (2) instead of (3)] and tuned the internal
parameters of our segmentation model, noted β and R on the
ensemble of training images via a local search approach on a
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Fig. 7. Distribution of the PRI metric, the number and the size of regions
over the 300 segmented images of the Berkeley image dataset.

discrete grid. We have found that R = 4.2 and β = 0.0375
are optimal hyper-parameters giving the following perfor-
mance measures; PRI = 0.78, VoI = 2.22, GCE = 0.20, and
BDE = 10.43, significantly less better than our GCE�-based
fusion model.

C. Discussion

As we can notice, our fusion model of simple, rapidly
estimated segmentation results is very competitive for differ-
ent kinds of performance measures and can be regarded as
a robust alternative to complex, computationally demanding
segmentation models existing in the literature.

We have compared our segmentation algorithm (called
GCEBFM) against several unsupervised algorithms. From
Table II, we can conclude that our method performs over-
all better than the others for different and complementary
performance measures and especially for the PRI measure
(which is important because this measure is highly correlated
with human hand segmentations) and with the GCE mea-
sure which is closely related to the classification error via

Fig. 8. From lexicographic order, progression of the PRI (the higher
value is better) and VoI, GCE, and BDE metrics (the lower value is bet-
ter) according to the segmentations number (L) to be fused for our GCEBFM
algorithm. Precisely, for L = 1, 5, . . . , 60 segmentations [by considering first,
one K-means segmentation (according to the RGB color space) and then by
considering five segmentation for each color space and 1, 2, . . . , 12 color
spaces].

Fig. 9. First row: three natural images from the BSD300. Second row: the
result of segmentation provided by the MDSCCT algorithm. Third row: the
result of segmentation obtained by our algorithm GCEBFM.

the computation of the overlap degree between two segmen-
tations (and this good performance is also due to our fusion
model which is based on this specific criterion). Statistics on
the segmentation results of our method (e.g., the distribution
of the PRI, the distribution of the number of regions and size
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Fig. 10. Example of segmentations obtained by our algorithm GCEBFM on several images of the Berkeley image dataset (see also Tables I and II for
quantitative performance measures and http://www.etud.iro.umontreal.ca/∼khelifil/ResearchMaterial/gcebfm.html for the segmentation results on the entire
dataset).

of the regions of the segmented Berkeley database images), for
our algorithm are given in Fig. 7. These statistics show us that
the average number of regions, estimated by our algorithm, is

close to the average value given by humans (24 regions) and
the PRI distribution shows us that few segmentation exhibits a
bad PRI score even for the most difficult segmentation cases.
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Fig. 11. Example of segmentations obtained by our algorithm GCEBFM on several images of the Berkeley image dataset (see also Tables I and II for
quantitative performance measures and http://www.etud.iro.umontreal.ca/∼khelifil/ResearchMaterial/gcebfm.html for the segmentation results on the entire
dataset).

Moreover, we can observe (see Figs. 5 and 8) that the PRI,
VoI, BDE, and GCE performance scores are better when L
(the segmentation number to be merged) is high. This test

shows the validity and the potentiality of our fusion proce-
dure and demonstrates also that our performance scores are
perfectible if the segmentation ensemble is completed by other
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TABLE III
COMPARISON OF SCORES BETWEEN THE GCEBFM AND THE MDSCCT

ALGORITHMS ON THE 300 IMAGES OF THE BSDS300. EACH VALUE

POINTS OUT THE NUMBER OF IMAGES OF THE BSDS300
THAT OBTAIN THE BEST SCORE

(and complementary or different) segmentation maps (of the
same image).

The experimental results (see Table II) show that our fusion
model outperforms all other fusion approaches in term of GCE
measure. On the one hand, this result is driven by the fact
that our model is based on an energy function originating
from the GCE. On the other hand, with the addition of an
efficient entropy-based regularization term (see Section II-B),
our model can accurately (and adaptively) estimate a result-
ing segmentation map with the optimal number of regions,
thus yielding a good similarity score between our segmen-
tation results and the ground truth segmentations (given by
humane expert). Also, in terms of BDE score, our model
outperforms all other fusion approaches excepted the PRIF
model. Let us finally add that our model gives a good
compromise (comparing to other methods) between all com-
plementary performance measures mentioned in Tables I and II
(this last point is important, since this good compromise
between relevant complementary performance indicators, is
also a clear indication of the quality of segmentations produced
by our algorithm).

The PRI, VoI, BDE, and GCE measures are quite differ-
ent for a given image compared to the measures obtained
by other approaches like the multidimensional scaling-based
segmentation model for the fusion of contour and texture
cues (MDSCCT) algorithm (see Table III and Fig. 9). It means
that these two methods perform differently and well for dif-
ferent images. This is not surprising since these two methods
are, by nature, very different from each other (the MDSCCT is
a purely algorithmic approach, on the contrary, our GCEBFM
algorithm is a fusion model whose objective is to combine dif-
ferent region-based segmentation maps). This fact may suggest
that these two methods extract complementary region infor-
mation and, consequently, could be paired up or combined
together to achieve better results.

Also, it is important to note that the GCEBFM method’s
performance strongly depends on the level of diversity existing
in the initial ensemble of segmentations. This means that a
better strategy for the generation of the segmentation ensemble
could ensure better performance results for our fusion model.

D. Computational Complexity

Due to our optimization strategy based on the ensemble
of superpixels (see Algorithm 1), the time complexity of our
fusion algorithm is O(nLNsNo), where n, L, Ns, and No are,
respectively, the pixel number within the image, the number of
segmentations to be fused, the number of superpixels existing
in the set of segmentations (to be fused) and No < Tmax, the

TABLE IV
AVERAGE CPU TIME FOR DIFFERENT SEGMENTATION ALGORITHMS

number of iterations of the steepest local energy descent (since
our iterative optimizer can stop before the maximum number
of iterations Tmax, when convergence is reached).

The segmentation operation takes, on average, about 2 and
3 min for an Athlon-AMD 64-Proc-3500+, 2.2 GHz, 4422.40
bogomips and nonoptimized code running on Linux; namely,
the two steps (i.e., the estimations of the L = 60 weak
segmentations to be combined and the minimization step of
our fusion algorithm) takes, respectively, on average, 1 min
to generate the segmentation ensemble and approximately 2
or 3 min for the fusion step and for a 320 × 214 image
(Table IV compares the average computational time for an
image segmentation and for different segmentation algorithms
whose PRI is greater than 0.76). Also, it is important to
mention that the initial segmentations to be combined and
the proposed energy-based fusion algorithm could easily be
processed in parallel or could efficiently use multicore pro-
cessors. It is straightforward for the generation of the set of
segmentations but also truth for our fusion model by an appli-
cation of a Jacobi-type version of the Gauss–Seidel-based ICM
procedure [72]. The final energy-based minimization can be
efficiently performed via the use of the parallel abilities of a
graphic processor unit (integrated on most computers) which
could significantly speed up the algorithm.

Finally, the source code (in C++ language) of our model
and the ensemble of segmented images are publicly acces-
sible via this link: http://www.etud.iro.umontreal.ca/∼khelifil/
ResearchMaterial/gcebfm.html in the goal to make possible
eventual comparisons with different performance measures and
future segmentation methods.

V. CONCLUSION

In this paper, we have introduced a novel and efficient
fusion model whose objective is to fuse multiple segmenta-
tion maps to provide a final improved segmentation result, in
the GCE sense. This new fusion criterion has the appealing
property to be perceptual and specifically well suited to the
inherent multiscale nature of any image segmentations (which
could be possibly viewed as a refinement of another segmenta-
tion). More generally, this new fusion scheme can be exploited
for any clustering problems using spatially indexed data (e.g.,
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motion detection or estimation, 3-D reconstruction, depth field
estimation, 3-D segmentation, etc.). In order to include an
explicit regularization hyper parameter overcoming the inher-
ent ill-posed nature of the segmentation problem, we have
recasted our likelihood estimation problem of the consensus
segmentation (or the so-called median partition) in the penal-
ized likelihood framework by adding, to the simple ML fusion
model a merging regularization term allowing to integrate
knowledge about the types of resulting fused segmentation,
a priori considered as acceptable solutions. This penalized
likelihood estimation procedure remains simple to implement,
perfectible, by incrementing the number of segmentation to be
fused, adapted to lower outliers, general enough to be applied
to different other problems dealing with label fields and is suit-
able to be implemented in parallel or to fully take advantage
of multicore (or multi-CPU) systems.
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